If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50t-5t^2-80=0
a = -5; b = 50; c = -80;
Δ = b2-4ac
Δ = 502-4·(-5)·(-80)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-30}{2*-5}=\frac{-80}{-10} =+8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+30}{2*-5}=\frac{-20}{-10} =+2 $
| 7(5-c)=-140 | | -3(41+x)=99 | | 8a-25=305 | | 5(l+12)=200 | | 1+0.75/x-0.125/x^2=0 | | 2x/3-1=x/3 | | 3n+11=4n+8 | | 20+y=-30 | | 80=50t-5t^2 | | 1.37x=2.7 | | 1.37=x2.7 | | 9(u-3)=18 | | 9b2=144 | | 57/80=x/100 | | 61(x+6)=78 | | 10^(x-1))-1=99 | | 7x+11=2x+31 | | 9x-11=21-7x | | 3^(2x-1)=40 | | 99=24.75x24 | | 7y+23=72 | | (9v8v4)=21 | | 3.x(2x-4)=6x-12 | | 2p/7-5=7 | | 10(p+4)=20 | | x+10+37=0 | | (2x^2+7)=13 | | X7+4+x=14+3x | | 1+3x+38=90 | | -6(5p+8)=-3p-21 | | -7x-3(5x+3)=101 | | 7x-(2x+1)=4-2x |